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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• FBD promoted oxidative stress and pro- 
inflammatory response.

• FBD caused upregulation of miR-221/ 
222 and downregulation of miR-17/20a.

• FBD altered the protein level of E2F2 
and P27kip1.

• FBD caused cell cycle arrest at the G1/S 
checkpoint and apoptosis.

• T-SeNPs rescued the insecticide’s 
adverse effects.
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A B S T R A C T

Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This 
research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro- 
inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target 
proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alle-
viative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against 
the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The 
major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3′,4′-trimethyl ether. T- 
SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days 
induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also 
distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, 
and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased 
in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, 
and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD 
toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating 
activity of eco-friendly synthesized T-SeNPs.

1. Introduction

Flubendiamide (FBD), (N2- [1,1- dimethyl-2-(methylsulfonyl) ethyl]- 
3-iodo-N1-[2-methyl-4- [1,2,2,2-tetrafluoro-1 (trifluoromethyl) ethyl] 
phenyl]-1,2- benzene dicarboxamide), is a relatively new phthalic acid 
diamide insecticide. The unique property of this compound is its apti-
tude to stimulate ryanodine receptors (RyRs), which are intracellular 
Ca2+ channels sensitive to ryanodine. This results in an increase in Ca2+

inflow into the cell and induces contraction of the skeletal muscles of 
insects (Das et al., 2017). It is considered safe for non-target since it does 
not activate mammalian RyRs; therefore, it is ubiquitously utilized 
worldwide to counter agricultural and domestic insects (Al-Mohaimeed 
et al., 2022). However, its excessive use may pose potential health 
hazards due to its slow degradation; FBD residues can persist on crops at 
harvesting time. Alarmingly, their accumulation in the body, even in 
small quantities, can adversely impact human health (Mandil et al., 
2021). In a reproductive toxicity study, male rats subjected to 200 
mg/kg of FBD showed a substantial decrease in sperm headcount per 
testis (Mandil et al., 2016). Mandil et al. reported that after 12 h in 
FBD-treated splenocytes, there was an increase in the frequency of 
micronuclei emergence (Mandil et al., 2020).

The prostate, an indispensable accessory organ of the male repro-
ductive system, maintains the lubrication of seminal fluid and sperm 
nourishment, stimulating sperm motility and capacity (Verze et al., 
2016). As such, it is vital to male fertility (Corti et al., 2022). Prostate 
cancer (PCa) is the most prevalent solid tumor among males and ranks 
second in terms of mortality rate (Siegel et al., 2021). Its etiology re-
mains unknown, but it is significantly prevalent among farmers residing 
in regions with high insecticide exposure (Pardo et al., 2020).

Oxidative stress is characterized by an imbalance between the pro-
duction and elimination of reactive oxygen species (ROS), which is 
caused by hyperactive signaling pathways (Kim et al., 2005; Hanahan 
and Weinberg, 2011). Oxidative stress from pesticide exposure may 
promote carcinogenic mutations (Tebourbi et al., 2011). Inflammation 
develops as an immediate and critical defense mechanism when the host 
is invaded or tissue is damaged. Sustained inflammation can lead to 
chronic inflammation, potentially increasing the organism’s suscepti-
bility to various chronic diseases, such as cancer (Lin et al., 2007). 
Continuous production of pro-inflammatory mediators and ROS may 
exacerbate genomic instability and promote the activation of a multi-
tude of transcription factors, including the critical tumorigenesis-related 
nuclear factor kappa B (NF-κB) (Federico et al., 2007; Zhang et al., 
2009).

The NF-κB family comprises transcription factors regulating 
apoptosis, cell proliferation, differentiation, and survival. These factors 
include nuclear factor-κB subunit 1 (NF-κB1) and nuclear factor-κB 

subunit 2 (NF-κB2), REL proto-oncogene nuclear factor-κB subunit 
(REL), RELA nuclear factor-κB subunit (RelA), and RELB proto-oncogene 
nuclear factor-κB subunit (RelB) (Rajendrasozhan et al., 2010). NF-κB 
activation has been identified as a factor in prostate cancer tumor pro-
gression, metastasis, and inflammation-associated tumor promotion 
(Luo et al., 2005; Hoesel and Schmid, 2013; Jin et al., 2013; Nguyen 
et al., 2014).

The activation of NF-κB is also responsible for the direct regulation of 
pro-inflammatory cytokine production, specifically tumor necrosis 
factor-alpha (TNF-α) and interleukin-1β (IL-1β) (Chen et al., 2018). 
Chronic inflammation evoked by pesticides can result in the secretion of 
proliferative cytokines (TNF-α, IL-1β, IL-8, and IL-6), thereby facilitating 
the growth of malignant cells (Grivennikov and Karin, 2011; Mokar-
izadeh et al., 2015).

Small noncoding RNAs (microRNAs) comprise a class of RNAs that 
regulate a broad spectrum of biological processes (Kloosterman and 
Plasterk, 2006; Bartel, 2009). As oncomiRs, miR-221 and miR-222 
(miR-221/-222) are involved in the pathogenesis of PCa (Sun et al., 
2009a, 2009b, 2014). Furthermore, miR-17 and miR-20a (miR-17/-20a) 
have been identified as suppressor miRNAs of PCa (Ottman et al., 2014).

Among the factors whose dysregulation was strongly associated with 
the development of PCa were the cyclin-dependent kinase inhibitor 
p27Kip1 and E2F2 proteins. E2F2, a factor belonging to the E2F family of 
transcription factors, has been reported as a miR-17/20a target gene 
(Sylvestre et al., 2007) and possesses a potent oncogenic capacity and 
can facilitate the progression of the cell cycle (Dimova and Dyson, 
2005). P27 kip1 is the target protein for miR-221/222 (Galardi et al., 
2007). Previous studies have demonstrated that low or absent P27Kip1 

expression is linked to advanced tumor grade of PCa (Macri and Loda, 
1998; Tsihlias et al., 1998).

The cell cycle is a fundamental process that occurs during the divi-
sion of eukaryotic cells. At distinct cell cycle phases, checkpoints regu-
late the proliferation of healthy cells (Ekholm-Reed et al., 2004). 
Constitutive mitogenic signaling and mutations in tumor suppressor 
genes and proto-oncogenes contribute to the dysregulation of the cell 
cycle and uncontrolled proliferation that characterize the process of 
tumorigenesis (MacLachlan et al., 1995). Apoptosis is an orchestrated 
cell death regulated by various signals and metabolic processes 
(Aboubakr et al., 2021). The disruption of apoptosis can promote the 
initiation and progression of the tumor (Lowe and Lin, 2000).

Nanotechnology has garnered significant global interest due to its 
prospective applications in numerous sectors, including medicine 
(Shirsat et al., 2015; Basnet et al., 2018). Selenium nanoparticles 
(SeNPs) exhibit chemical, physical, and biological properties (Aref and 
Salem, 2020; Salem et al., 2021). SeNPs have significant biological ap-
plications as antimicrobial, antioxidant, and anticancer activity 
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(Thakkar et al., 2010; Hashem et al., 2021).
A wide array of techniques exist for synthesizing SeNPs, including 

physical, chemical, and biological-physical approaches (Chaudhary and 
Mehta, 2014; Weng et al., 2019). On the other hand, specific techniques 
are costly, necessitate using hazardous substances, and entail laborious, 
complicated, and unsustainable protocols. Therefore, chemical and 
physical processes are regarded less favorably than biological ones 
(Skalickova et al., 2017). Preferably, fungi secondary metabolites pre-
sent in cell filtrate are utilized as reducing and encapsulating agents in a 
straightforward and expeditious approach to produce metal nano-
particles in an environmentally friendly manner (Bilesky-José et al., 
2021; Raja et al., 2021). This synthesis method is ecologically sustain-
able, biodegradable, one-step, economical, and requires reduced reac-
tion time and lower solvent usage.

Among filamentous fungi, species of Trichoderma are multi-
functioning fungi found in diverse environments, typically forest or 
agricultural soils (Zin and Badaluddin, 2020). Previous studies have 
documented that SeNPs can be generated more from Trichoderma culture 
filtrate (Nandini et al., 2017; Hu et al., 2019). The biogenic synthesis of 
SeNPs by utilizing six species of Trichoderma has been recently referred 
to as "Trichogenic" (Nandini et al., 2017).

Trichoderma species produce numerous volatile organic compounds 
(VOCs), which possess various biological and chemical attributes, 
including antioxidants and antitumor potential (Saravanakumar et al., 
2019). Recent studies indicated several compounds extracted from 
T. atroviride had a high anti-prostate cancer potential (Saravanakumar 
et al., 2019) and were cytotoxic against different cancer cell lines (Li 
et al., 2020).

In this study, we used PrEC prostate cells to investigate the repro-
ductive toxicity of FBD. The prostate is a critical organ in the male 
reproductive system, making it a relevant model for examining repro-
ductive effects. Furthermore, PrEC epithelial cells could be transformed 
into pre-neoplastic lesions and invasive carcinoma at the final stages 
through genetic and epigenetic alterations (Zhou et al., 2016).

The current study assessed the toxic effects of FBD on crucial path-
ways in the process of prostate tumorigenesis, such as oxidative stress, 
pro-inflammatory responses, oncogenic and suppressor miRNA expres-
sions and their target proteins, cell cycle dysregulation, and apoptosis. 
These molecular transformation markers describe distinctive features 
that transformed cells acquire during the oncogenic process of prostate 
carcinogenesis. Furthermore, the present study explored the ameliora-
tive role of SeNPs biosynthesized by T. aureoviride (T-SeNPs) against 
toxicity instigated by FBD.

2. Materials and methods

2.1. Biosynthesize of SeNPs by T. aureoviride

2.1.1. T. aureoviride source and taxonomy
In the present study, T. aureoviride was derived from previous 

phylogenetic analysis and identification of 40 strains by (Hewedy et al., 
2020). To confirm the prior identification of the fungal strain 
(T. aureoviride, MH908501), the TEF1 gene was amplified using two 
primers (Eurofins) named EF1-728 F (5ʹCATCGAGAAGTTCGA-
GAAGG3ʹ) and TEF1 R (5ʹGCCATCCTTGGAGATACCAGC3ʹ) as previ-
ously described by (Hewedy et al. 2020).

2.1.2. T. aureoviride inoculum preparation
A pure culture of the isolate T. aureoviride fungus was obtained by 

aerobically inoculating T. aureoviride on Potato Dextrose Agar (PDA) 
using the protocol of Samuels et al. (2002). (For details, see Appendix A, 
Supplementary material).

2.1.3. Extraction of Trichoderma’s metabolites
The secondary metabolites of T. aureoviride were extracted from its 

cell-free filtrate following previous techniques of Saravanakumar et al. 

(2015); Saravanakumar and Wang (2018). (For details, see Appendix B, 
Supplementary material). To identify the chemical composition, the 
T. aureoviride cell-free filtrate was eluted with 80% methanol.

2.1.4. Preparation of SeNPs and T-SeNPs
SeNPs were prepared using the technique of (Vahdati and Tohidi 

Moghadam, 2020). (For details, see Appendix C, Supplementary mate-
rial). The generation of T-SeNPs was carried out following ( Nandini 
et al. 2017 ) with some modifications. The production of nanoparticles 
was started by adding 40 ml of T. aureoviride culture filtrate to 70 ml of 
sterile distilled water that contained 25 mM sodium selenite to make it 
up to 110 ml. The reaction mixture was shaken at 150 rpm at 28 ̊ C for 7 
days. The appearance of a change in reaction mixture color was the first 
visible indicator of nanoparticle production. After 7 days, the mixture of 
reactions was gathered, and the nanoparticles were precipitated by 
centrifuging for 10 min at 10,000 rpm. The precipitate was refined after 
being rinsed with double distilled water (Zhang et al., 2011). Appro-
priate controls were maintained throughout the trial.

2.1.5. Characterization of synthesized T-SeNPs and SeNPs
The preparation of T-SeNPs and SeNPs for characterizations was 

performed according to (Hu et al., 2019). Fourier-transform infrared 
spectroscopy (FTIR) (PerkinElmer, the UK) was used to identify the in-
teractions between functional groups and chemical composition at the 
400–4000 cm-1 scanning range. The nano-powders crystalline structure 
and phase identification were investigated utilizing an X-ray Diffrac-
tometer (XRD) (SHIMADZU, XRD-6000) equipped with Copper Kα ra-
diation. (For details, see Appendix D, Supplementary material). The 
synthesized T-SeNPs’ surface charge and particle size were determined 
utilizing a Nanotrac-Wave II Zetasizer (MICROTRAC, USA). The size and 
morphological characteristics of the T-SeNPs were subsequently evalu-
ated using Transmission Electron Microscopy (TEM) (JEM-2100, JEOL, 
Japan). (For details, see Appendix E, Supplementary material).

2.1.6. Metabolite profiling through GC-MS analysis
To explore the metabolites that were found in the cell filtrate of 

T. aureoviride as well as those that are implicated in the generation of 
SeNPs, a metabolite profiling procedure was conducted utilizing GC-MS 
(Trace GC-TSQ mass spectrometer, Thermo Scientific, Austin, TX, USA). 
(For details, see Appendix F, Supplementary material). The identity of 
bioactive compounds was determined using the National Institute 
Standards and Technology (NIST) database and WILEY mass spectrum 
libraries of the GC-MS system with over 62,000 patterns.

2.2. In vitro testing

2.2.1. Chemicals
The commercial formulation of FBD (Takumi®) (20% WDGs) was 

purchased from Samtrade Company, Cairo, Egypt.

2.2.2. Cell lines
Human primary prostate epithelial cells (PrEC) were purchased from 

the American Type Culture Collection (ATCC) and cultivated using 
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10 μg/ 
mL of insulin, 10% fetal bovine serum (FBS), and 1% antibiotics (peni-
cillin-streptomycin). The cells were retained in a 37 ◦C humidified at-
mosphere of 5% CO2.

2.2.3. MTT assay
MTT assay (Sigma-Aldrich) was utilized to assess the impact of FBD, 

SeNPs, and T-SeNPs on the viability of PrEC cells. First, FBD, SeNPs, and 
T-SeNPs were diluted with a DMEM medium. Briefly, PrEC cells were 
sown with a density of 1.8 × 103 in 96-well cell culture microplates 
(Corning Inc., USA). Each microplate was incubated at 37 ◦C with 
different concentrations of FBD (210, 180, 120, 100, 80, 60, and 30 μM). 
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In addition, the cells received the same concentrations of SeNP and T- 
SeNP, which were as follows: 280, 250, 220, 190, 150, 110, 90, and 60 
μl/ml.

These concentrations were selected to ensure a comprehensive rep-
resentation of the effects from those that are undetectable (in compar-
ison to the negative controls, i.e., 0%) to those that result in 100% 
mortality. Microplate without any treatment was considered as a con-
trol. The medium was withdrawn after 24 h of incubation, and each well 
received 0.5 mg/ml of MTT in phosphate-balanced solution (PBS), 
which was then incubated at 37 ◦C. Cells were incubated for 4 h. The 
changes were measured using ROBONIK P2000 Elisa Reader with an 
optical density of 570 nm. The cell viability percentage is expressed as 
(absorbance of treated cells/absorbance of untreated cells) × 100 %. 
This equation was used to measure the sensitivity of cells to FBD, SeNPs, 
and T-SeNPs. The half-maximal inhibitory concentration (IC50) value is 
the concentration that results in 50% of cells dying.

In the current study, we have selected the highest concentration of 
12 μM of FBD, which is approximately 10 % of the IC50 value determined 
through cytotoxicity analysis. This selection ensured that FBD would not 
directly impact PrEC cells’ viability. Furthermore, the selected concen-
tration of FBD mimicked the conditions encountered in daily life. The 
choice of this concentration was based on findings from prior studies, 
which indicated that in vitro concentrations of 10–50 μM provide an 
accurate representation of real-life exposure scenarios to insecticides 
such as organophosphorus (Buratti et al. 2002, 2003, 2005; Buratti and 
Testai, 2007).

Considering the increased environmental persistence of FBD, which 
does not dissipate promptly into the environment and has the potential 
to induce chronic effects in a manner comparable to that of persistent 
compounds, such as organophosphates (Das et al., 2017; Jadhav and 
David, 2017), the same exposure threshold was utilized in this investi-
gation to mimic environmental exposure to FBD. Although this meth-
odology might not have broad applicability to all pesticide types, it 
provided valuable insights for our investigation’s preliminary stage.

2.2.4. Exposure conditions
The PrEC cells were planted at a density of 5 × 103 cells/cm2 in the 

12-well cell culture plates. Repeated exposure to FBD was conducted in 
this study to assess the toxicity of FBD over an extended period and 
mimic real-world exposure to pesticides. Over 14 days (Kramer et al., 
2015), the seeded cells were treated with FBD, SeNPs, and T-SeNPs as 
follows: group 1: cells were treated with FBD 12 μM, group 2: cells were 
treated with SeNPs 50 μl/ml (Hu et al., 2019), group 3: cells were treated 
with T-SeNPs 50 μl/ml (Hu et al., 2019), group 4: cells were treated with 
FBD 12 μM, then treated with SeNPs 50 μl/ml, group 5: cells were 
treated with FBD 12 μM, then treated with T-SeNPs 50 μl/ml, and group 
6: cells without any treatment considered as control. Cell culture media 
was changed with fresh FBD, SeNPs, and T-SeNPs suspensions every 2 or 
3 days, with no wash steps between treatments. All cells were incubated 
at 37 ◦C in 5% CO2.

2.2.5. Oxidative stress analysis
The microscale analysis of the level of malondialdehyde (MDA), 

content of reduced glutathione (GSH), superoxide dismutase (SOD), 
glutathione peroxidase (GPx), glutathione reductase (GR), glutathione 
-S- transferase (GST), total antioxidant capacity (TAC), protein carbonyl 
and catalase (CAT) activity was performed in the PrEC cells supernatants 
in control and treated groups. The measurements were conducted using 
commercial kits that adhered to the manufacturer’s instructions (Bio-
diagnostic, Giza, Egypt).

The MDA, GSH, SOD, CAT, GPx, GR, GST, TAC, and protein carbonyl 
were measured according to (Ohkawa et al., 1979; Beutler et al., 1963; 
Nishikimi et al., 1972; Aebi, 1984; Paglia and Valentine, 1967; Goldberg 
and Spooner, 1987; Habig et al., 1974; Koracevic et al., 2001; Levine 
et al., 1990), respectively. Each experiment was conducted in triplicate.

2.2.6. The quantitative RT-PCR
Following the manufacturer’s instructions, a miRNA easy extraction 

kit (QIAGEN, Germany) was used to isolate total RNA from treated and 
untreated PrEC cells. To evaluate the concentration and guarantee the 
purity of the samples’ RNA, a Nanodrop instrument (Thermo Scientific, 
USA) was employed. Using a miScript II RT kit, complementary DNA 
(cDNA) was produced by reverse transcription (QIAGEN, Germany). 
Real-time PCR was executed utilizing the ROCHE Real-time PCR light 
cycler detection equipment with the SYBR Green master mix (Bio-Rad 
Laboratories, USA).

Gene primers of inflammatory cytokines and miRNAs were designed 
using the National Center for Biotechnology Information (NCBI) data-
base. Primers for apoptotic genes, including Caspase-3, Bax, P53, Cas-
pase-9, and Bcl-2, were utilized as previously outlined (Al-Fatlawi et al., 
2015). The expression levels of miRNAs and mRNAs were normalized to 
the internal references of U6snRNA (Song et al., 2015) and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively, and 
calculated using the 2− ΔΔCT technique (Livak and Schmittgen, 2001). 
The forward and reverse primer sequences of miRNAs and mRNAs are 
listed in Table S1. Three repetitions of each experiment were performed.

2.2.7. Western blotting
The total protein of the treated and untreated PrEC cells was 

extracted using a lysis buffer. A 20 μg protein was isolated on SDS-PAGE 
and then transferred to a membrane. Afterwards, the membrane was 
blocked in TBST for 2 h at room temperature, utilizing 5% nonfat dry 
milk. The membrane was incubated overnight at 4 ◦C with primary 
antibodies P27kip1, E2F2, and β-actin. The blots were then washed three 
times with TBST. The chemiluminescent Western ECL substrate (Perki-
nElmer, Waltham, MA) was applied to the blot according to the manu-
facturer’s recommendation.

2.2.8. Cell cycle regulation
Treated and untreated PrEC cells underwent trypsinization, centri-

fugation at 300^ g for 5 min, and subsequent rinsing in ice-cold PBS. 
Following this, the cells were resuspended in 1 ml of cold ethanol 70% 
(v/v) and incubated at 4 ◦C for at least 2 h. Following two rinses with 2 
ml PBS, the cells were incubated for 15 min. After centrifugal, the cells 
were stained with 0.5 ml propidium iodide solution (PI). Cells were 
mixed and incubated in dark conditions for 30 min at 37 ◦C. Finally, the 
DNA content was measured by a flow cytometer (BD FACSCalibur™) 
with an excitation source set at 488 nm and an emission source set at 
525 nm.

2.2.9. Apoptosis examination
Apoptotic PrEC cells have been evaluated by labeling with FITC- 

Annexin and PI in accordance with the manufacturer’s protocol (BD 
Biosciences, San Jose, CA, USA). The PrEC cells were gathered and 
rinsed with PBS. They were then resuspended in 100 μL of a binding 
buffer containing 5 μL of PI and annexin V-FITC. The mixture was 
permitted to react at room temperature for 10 min without exposure to 
light. The percentage of cells in each quadrant was identified and 
analyzed using a BD FACSCalibur™ flow cytometer.

2.3. Statistics

All assays were performed in triplicates. Statistical tests were 
executed utilizing SPSS software (version 21.0; SPSS Inc., Chicago, IL, 
United States). A one-way ANOVA, followed by Duncan’s multiple 
comparisons test, was used to compare the various data sets. The find-
ings were presented as mean ± SD. When p ≤ 0.05, values were deemed 
statistically significant. GraphPad PRISM 9.0 software (Graph-Pad 
Software, San Diego, USA) was utilized to calculate the IC50 and visu-
alize data.
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lines, including DU-145 and PC-3, exhibit constitutive expression of 
NF-kB1 and NF-kB2 genes. In contrast, normal human prostate epithelial 
cells exhibit negligible activation of NF-kB genes (Gasparian et al., 2002; 
Nguyen et al., 2014; Dominska et al., 2017). In addition, NF-kB1 
expression is crucial for both the early and advanced stages of PCa 
(Dominska et al., 2017). The capabilities of cancer cells to migrate and 
invade are regulated by the RelB gene (Lessard et al., 2005; Xu et al., 
2009).

Prostate cancer cells such as PC3, DU-145, and LNCaP exhibited 
increased expression of RelA, RelB (Josson et al., 2006; Hatano et al., 
2011), and C-Rel (Dominska et al., 2017). Previous studies reported that 
human prostate cancer cells PC3 and DU145 cells express IL-8 (Lee et al., 
2004; Araki et al., 2007; Singh and Lokeshwar, 2009) and IL-6 (Xu et al., 
2017; Wang et al., 2022). IL-1β and TNF-α expressions are increased in 
LNCaP prostate epithelial cells (Safari et al., 2020). In this study, 
pro-inflammatory cytokines, including NF-kB1, NF-kB2, RelA, RelB, 
C-Rel, TNF-α, IL-1β, IL-8, and IL-6 were upregulated in PrEC cells treated 
with FBD, suggesting the presence of an inflammatory response. FBD 
stimulated NF-κB due to oxidative stress (Siomek, 2012).

Substantial evidence has proven the involvement of miRNAs in 
regulating various cellular biological mechanisms, including develop-
ment, cell proliferation, apoptosis, and tumorigenesis (Catellani et al., 
2021; Li et al., 2018, 2022; Qiu et al., 2022). It is known that 
miR-221/222 is overexpressed in PC3 prostate cancer epithelial cells 
(Shao et al., 2018; Alwyn Dart et al., 2019). In addition, miR-17/-20a is 
downregulated in LNCaP prostate cancer epithelial cells (Ottman et al., 
2014, 2016). However, when overexpressed in non-tumor cells, it has 
anti-proliferative, adhesive, and anti-migratory effects (Ottman et al., 
2016).

The current study observed that exposure to FBD resulted in an 
upregulation of miR-221/222 expression and a significant down-
regulation of miR-17/20a. Based on our findings, it appears that the 
modification of miRNA transcription could be a consequence of the 
activation of NF-κB of FBD induced by oxidative stress (Simone et al., 
2009; Ebrahimi et al., 2020; Mandil et al., 2023). This activation results 
in an elevation of cytosolic free Ca2+ concentration and subsequently 
hinders the Ca2+ clearance system. Ultimately, this causes mitochon-
drial depolarization and cell dysfunctions (Salido, 2009; Kushawaha 
et al., 2020).

Failure of a cell to regulate its proliferation and growth is a distinc-
tive hallmark of cancer (Dong et al., 2010). Proteins E2F2 and p27 kip1 

are crucial for controlling the cell cycle. The expression of p27 kip1 and 
miR-221/222 is inversely correlated with each other in primary prostate 
cancer (Galardi et al., 2007; Sun et al., 2014). The p27 kip1 expression 
was impeded in prostate cancer epithelial cell lines 22Rv1 and LNCaP 
(Galardi et al., 2007; Mercatelli et al., 2008).

On the other hand, E2F2 regulates various molecular mechanisms, 
including cell cycle, DNA repair, cellular proliferation, and cell death 
(Chen et al., 2009). It has substantial oncogenic potential and can 
accelerate the cell cycle, thus promoting cell proliferation at twice the 
rate of control cells (Dong et al., 2010). It has been reported that E2F2 
was upregulated in the PC3 prostate cancer epithelial cell line and, even 
more, correlated well with cancer progression and prognosis (Tyagi 
et al., 2002; Dong et al., 2010). The current investigation results 
revealed that PrEC cells exposed to FBD displayed a notable decrease in 
p27kip1 level and an increase in E2F2 level, inducing cell cycle deregu-
lation. These results have emerged owing to the oxidative stress induced 
by FBD (Quintos et al., 2010; Wang et al., 2021).

Therefore, flow cytometry and PI labeling were employed to validate 
the cell cycle deregulation and apoptosis induced by FBD. The main goal 
of cell cycle analysis is to quantify the amount of DNA present in each 
cell cycle phase (Dong et al., 2010). At the G1/S checkpoint, the cell 
cycle of LNCaP and DU145 prostate cancer epithelial cells was halted 
(Galardi et al., 2007; Roy et al., 2008; Van Duijn et al., 2010; Han et al., 
2022). The present inquiry unveiled that exposure to FBD instigated a 
halt in the progression of the cell cycle of PrEC cells at the G1/S 

checkpoint. The observed outcomes could potentially be attributed to 
FBD-induced oxidative stress. An overabundance of ROS causes per-
manent damage to cellular constituents, impeding the progression of the 
cell cycle (Metallo and Vander Heiden, 2013). Moreover, the halting of 
the cell cycle can be ascribed to a multitude of factors, encompassing the 
increases of E2F2 levels, the reduction in p27kip1 levels, and the over-
expression of miR-221/-222 through FBD exposure (Galardi et al., 2007; 
Roy et al., 2008; Nogueira et al., 2008; Moon et al., 2010; Nedeljkovic 
et al., 2018; Han et al., 2022).

The intrinsic apoptotic pathway is initiated by a pro-apoptotic 
stimulus that induces mitochondrial membrane disruption, which 
leads to the activation of caspases (Xiong et al., 2014). The Bcl-2 family 
of proteins regulates the mitochondrial pathways of apoptosis. This 
family is divided into anti-apoptotic proteins, such as Bcl-2 and 
pro-apoptotic proteins, such as Bax, which are responsible for the de-
cision to initiate apoptosis in cells (Borner, 2003). Further, activating 
the tumor suppressor protein P53 may facilitate the apoptotic process 
through either transcription-independent mechanisms or activating the 
pro-apoptotic protein (Fridman and Lowe, 2003; Jeffers et al., 2003). 
The dysregulation of apoptosis may facilitate oncogenesis (Fulda, 2009).

In the present research, cellular apoptosis (early and late) was 
considerably instigated after FBD intoxication. Moreover, FBD upregu-
lated the gene expression of P53, Bax, Caspase-9, and Caspase-3 while 
simultaneously downregulating the gene expression of Bcl-2, activating 
apoptosis. The observed result could potentially be ascribed to the G1/S 
checkpoint arrest triggered by FBD exposure, which permits cells to 
proceed along the apoptotic pathway (Hunter and Pines, 1994), as well 
as the oxidative stress elicited by FBD (Nogueira et al., 2008; Moon et al., 
2010; Mandil et al., 2023).

The outcomes achieved here align with those of earlier studies 
revealing that FBD exposure at 40 μM for 12 h can cause apoptosis in 
thymocytes of male Wistar rats (Mandil et al., 2023). Previous in vivo 
investigations have divulged that FBD significantly increased the mRNA 
levels of P53, Caspase-3, Caspase-9, and Bax in the liver of zebrafish 
(Meng et al., 2022). Additionally, chlorantraniliprole, a diamide insec-
ticide, inhibited the Bcl-2 expression in the liver of zebrafish (Meng 
et al., 2022).

T. aureoviride was selected to investigate the attenuation effects of 
synthesized T-SeNPs conjugate on alleviating FBD-induced toxicities in 
PrEC cells. Thus, in the present study, T-SeNPs were generated from Se +

using T. aureoviride cell filtrate (microbe’s cell component) (Nandini 
et al., 2017) rather than the entire microorganism because when using 
live microorganisms, the growth stage and incubation time significantly 
impact nanoparticle size and characteristics (Fernández-Llamosas et al., 
2016). The presence of T-SeNPs can be detected through a color tran-
sition (brick orange) that occurs throughout the reaction, as documented 
by Nandini et al. (2017). Multiple studies have revealed the synthesis of 
SeNPs utilizing ascorbic acid as the reducing agent (Malhotra et al., 
2014).

Hydrodynamic size, zeta potential, and PDI are key indices that 
characterize nanoparticles (Zhao et al., 2016). The hydrodynamic sizes 
of T-SeNPs and SeNPs were 206.4 and 88.6 nm, respectively, exhibiting 
a narrower size distribution. Lower PDI values signify a more uniform 
size distribution of nanoparticles (Mi et al., 2021). Owing to the greater 
zeta potential of the produced T-SeNPs, the electrostatic repulsions be-
tween them are increased, making them more stable; this stability may 
be due to the stabilization of SeNPs by T. aureoviride cell filtrate 
biomolecules.

In the present investigation, the XRD data of T-SeNPs revealed a dual 
phase consisting of amorphous and nano-crystalline nanoparticles. In 
contrast to SeNPs, these nanoparticles exhibited noisy characteristics 
and broad peaks devoid of distinct, sharp reflections. These findings 
suggest that the T-SeNPs engaged in interactions with biomolecules 
found in the fungus cell filtrate (Nandini et al., 2017). This characteristic 
feature likely influenced the interactions in our study, as the amorphous 
and nano-crystalline nature of T-SeNPs could enhance their reactivity 
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and interaction with cellular components. Consequently, this might 
have contributed to the observed enhancement of T-SeNPs activity.

The FT-IR spectra acquired for SeNPs biosynthesized by 
T. aureoviride identified the presence of carbonyl, ketonic, hydroxyl, 
amino, phenolic, and flavonoid functional groups, which are utilized in 
the production of T-SeNPs. The biomolecules are sustained by the me-
tabolites generated by T. aureoviride, which are responsible for the 
presence of these functional groups. The aforementioned functional 
groups exhibit metal-binding capabilities and serve as capping agents 
and stabilizers for the Se nanoparticles, thereby impeding their aggre-
gation (Prasad and Selvaraj, 2014; Sabandar et al., 2017; Baranović and 
Šegota, 2018; Liu et al., 2020; Hosseinpour et al., 2022).

This finding aligns with the research carried out by Nandini et al. 
(2017) and Ogunleye et al. (2022), which illustrated that nanoparticles 
produced by Trichoderma spp. were surrounded by proteins that 
potentially accounted for their stability, as determined by FI-TR spec-
trum analysis. Moreover, the bio-reduction of SeNPs can be attributed to 
the hydroxyl and carbonyl functional groups that are currently present.

The morphology and size of the T-SeNPs and SeNPs generated in the 
present study were spherical nanoparticles well dispersed without 
agglomeration in the TEM micrographs, with average particle sizes less 
than 100 nm. Characters of SeNPs generated were consistent with earlier 
studies on synthesizing SeNPs from fungal sources (Nandini et al., 2017; 
Hu et al., 2019; Zhang et al., 2019). Thus, the current findings un-
equivocally demonstrated the varying capacity of T. aureoviride to pro-
duce SeNPs. Prameela Devi et al. also observed this finding when they 
assessed 75 strains of Trichoderma spp. pertaining to five unique species 
for silver nanoparticle synthesis (Prameela Devi et al., 2013).

A GC-MS examination was conducted to identify the metabolites 
found on the T-SeNPs. Out of a total of 25 metabolites that were iden-
tified in the cell filtrate of T. aureoviride, 5 were determined to be 
involved in the coating of SeNPs. The major identified metabolites were 
isochiapin B and quercetin 7,3′,4′-trimethyl ether. These findings were 
supported by FT-IR analysis of T-SeNPs. These results were due to the 
adsorption of these constituents on the nanoselenium surface (Siakavella 
et al., 2020).

Isochiapin B has been reported to possess antitumor, antimicrobial, 
and antioxidant activity properties (Gach et al., 2015; Sharma et al., 
2021). Moreover, quercetin 7,3′,4′-trimethyl ether is one of the quercetin 
derivatives, which is a ubiquitous flavonoid that exhibits pharmaco-
logical characteristics as an antitumor, antioxidant, and 
anti-inflammatory (Kalender et al., 2012; Hassan et al., 2019). Earlier 
studies described quercetin’s efficacy in synthesizing SeNPs (Mittal 
et al., 2014).

Quercetin inhibited NF-kB activation in primary cultured thymo-
cytes and splenocytes of rats treated with monosodium glutamate, 
thereby decreasing the gene expression of IL-1β, TNF-α, and IL-6 (Das 
et al., 2024). Moreover, quercetin has antioxidant properties through 
multiple mechanisms, such as its ability to scavenge free radicals, 
quench singlet oxygen, and donate hydrogen compounds (Wilms et al., 
2008).

It increased GSH quantity and the activities of CAT, SOD, and GPx 
while decreasing MDA levels in HepG2 cells (Yarahmadi et al., 2021). 
The administration of quercetin resulted in a decrease in the levels of 
protein carbonyl and an increase in the TAC of rat testicular cells (Benko 
et al., 2020). Quercetin increased GST, GR, and TAC activities in the 
testes and epididymis of dichlorvos-exposed rats (Bukunmi Ogunro, 
2023).

Quercetin inhibits oncogenes or increases tumor suppressor genes by 
altering miRNA expressions (Li et al., 2014; Farooqi et al., 2018). 
Furthermore, quercetin mediated the upregulation of P27kip1 and 
downregulation of E2F2 and triggered the halt of the cell cycle during 
the G2/M phase in several cancer cells (Mu et al., 2007; Jeong et al., 
2009; Huan et al., 2012). Quercetin also substantially mitigated the 
effects of cellular damage and apoptosis provoked by various in-
secticides (Zeng et al., 2021). It exhibits anti-apoptotic properties 

through multiple mechanisms, such as its ability to scavenge free radi-
cals, quench singlet oxygen, and donate hydrogen compounds (Wilms 
et al., 2008).

The treatment of quercetin caused a reduction in the expression of 
Caspase-3 and Bax genes, as well as an increase in Bcl-2 expression in the 
lung tissues of cypermethrin-exposed rats (Ileriturk et al., 2022). He-
patic P53 and Caspase-9 gene expressions were substantially reduced in 
fenitrothion-intoxicated foetal rats following quercetin treatment 
(Ibrahim et al., 2021).

Our findings elucidated that the ameliorative role of T-SeNPs in the 
molecular and cellular toxicity in the PrEC cells induced by FBD is more 
pronounced than the SeNPs. The cytotoxicity of T-SeNPs was lower on 
PrEC cells than SeNPs. These findings paralleled with those of Hu et al. 
(2019), who stated that SeNPs produced by culture filtrates of 
T. harzianum did not exhibit cytotoxicity towards the GES-1 gastric 
epithelial cell line, LX-2 human hepatic stellate cell line, and HIEC in-
testinal epithelial cell line.

In this work, T-SeNPs or SeNPs decreased MDA and protein carbonyl 
levels, restored the GPx, CAT, GR, TAC, GST, and SOD activities, and 
augmented the GSH amount in the FBD-intoxicated group. These results 
indicate that T-SeNPs or SeNPs potentially scavenge free radicals and 
exert an antioxidative effect. Earlier in vivo studies have revealed that 
the administration of SeNPs to cypermethrin-treated rats resulted in a 
significant decrease in hepatic MDA levels and a considerable increase in 
GSH, SOD, and CAT levels (Abdou and Sayed, 2019).

The activities of GST and GR were enhanced in male fetuses of rats 
treated with SeNPs (Manojlović-Stojanoski et al., 2022). The activity of 
GR was elevated in the brain tissues of cadmium-exposed rats (Al Kah-
tani, 2020). SeNPs administration reduced protein carbonyl levels in the 
ovary tissue of female rats intoxicated with cadmium (Choopani et al., 
2023). The activity of TAC in buffalo rat liver (BRL) cells was elevated by 
SeNPs at concentrations of 1 and 12 μM (Wang et al., 2020).

The co-administration of T-SeNPs or SeNPs with FBD lowered the 
upregulating mRNA of NF-kB family members, IL-6, TNF-α, and IL-1β, 
suggesting the presence of anti-inflammatory properties. Additionally, 
the present study revealed that the post-treatment of T-SeNPs or SeNPs 
remarkedly decreased elevated expression of miR-221/222 and boosted 
decreased expression of miR-17/20a in FBD-exposed cells, indicating 
antitumor efficacy. The T-SeNPs or SeNPs substantially recovered 
p27kip1 and E2F2 expressions in FBD-intoxicated cells. On the other 
hand, both SeNPs and SeNPs-T extracts inhibited G2/M phase progres-
sion in FBD-treated cells; however, the fraction of cells inhibited by T- 
SeNPs treatment was greater, implying an anti-proliferative effect. The 
halt of the cell cycle at the G2/M phase is considered essential antitumor 
target links, which have now become hotspots for investigation in 
developing several antitumor therapies (Venkatadri et al., 2016). 
Consequently, this research suggests that the antitumor and antioxidant 
mechanisms of T-SeNPs are also focused on cell-cycle arrest.

Another noteworthy finding was that T-SeNPs significantly attenu-
ated the apoptotic rate in FBD-exposed cells. Moreover, T-SeNPs notably 
decreased the mRNA levels of Caspase-3, Caspase-9, Bax, and P53, while 
increasing the mRNA level of Bcl-2 in the FBD-intoxicated group. Our 
findings are consistent with those of previous research, which demon-
strated that the administration of SeNPs could reduce the elevated 
expression of Caspase-3, Caspase-9, and Bax, as well as increase the 
expression of Bcl-2 in grass carp hepatocytes (L8824) that were treated 
with 4-tert-butylphenol (Cui et al., 2023). Previous in vivo studies have 
shown that SeNPs suppress the gene expression of intestinal P53 in 
healthy mice (Sun et al., 2019).

In this study, PrEC cells exhibited apoptosis when treated with either 
T-SeNPs or SeNPs alone, although the apoptotic rate was lower with T- 
SeNPs. Furthermore, our findings demonstrated a considerable increase 
in Caspase-3, Caspase-9, Bax, and P53 and a significant reduction in Bcl-2 
expression following treatment with either T-SeNPs or SeNPs. However, 
the changes in the expression of apoptosis-related genes were less pro-
nounced with T-SeNPs. These findings may be attributed to the ability of 

S.S. Arafa et al.                                                                                                                                                                                                                                 Chemosphere 365 (2024) 143305 

12 



SeNPs to induce apoptosis through depleting mitochondrial membrane 
potential (Zhang et al., 2013).

Additionally, SeNPs could induce apoptosis through a mitochondria- 
mediated apoptotic pathway, dependent on Caspase-3 and Caspase-9 
(Liao et al., 2015; Wang et al., 2020), and may also trigger apoptosis 
via P53 activation (Jiang et al., 2014). Quercetin may contribute to the 
reduction of apoptosis in response to T-SeNP treatment. These results 
align with previous research demonstrating the potential of SeNPs to 
induce apoptosis in human keratinocytes (HaCaT cells) (Kirwale et al., 
2019). Additionally, the apoptotic rate of BRL cells is substantially 
increased following SeNPs at 48 μM for 24 h (Wang et al., 2020).

Following the findings of our GC-MS analysis, the antioxidant ac-
tivity of T-SeNPs was due to the capping of quercetin and isochiapin B. 
Consequently, T-SeNPs exert amelioratory effects on the toxicity 
induced by FBD (Fig. S3). This beneficial action may be attributed to the 
ability of nanoparticles to enhance the stability and solubility of phy-
tochemicals, strengthen their absorption, guard them against premature 
deterioration in the body, and extend the duration of their circulation 
(Wang et al., 2014). Moreover, nanoparticles rapidly garner momentum 
as an antitumor and antioxidant due to their excellent surface area to 
size ratio (Joshi et al., 2019; Samrot et al., 2022).

5. Conclusion

We conclude that repeated exposure of PrEC cells to FBD induced 
oxidative stress and pro-inflammatory response; this leads to chronic 
inflammatory reactions, altering oncogenic and suppressor miRNA and 
their target proteins. It also provoked cell cycle arrest at the G1/S 
checkpoint and eventual apoptosis. Our findings also revealed that 
T. aureoviride could be employed for the mycosynthesis of SeNPs and 
exhibited antitumor, anti-inflammatory, and antioxidant properties 
against toxicities induced by exposure to FBD. Future studies comparing 
the effects of FBD exposure in cancer cell lines could provide further 
insights into the differential responses between normal and cancer cells, 
enhancing understanding of the broader implications of FBD toxicity 
and the ameliorative effects of T-SeNPs.
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